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Abstraet--A model with constant vorticity in the liquid phase has been applied to the study of interfacial 
waves between two inviscid fluids in relative motion, in order to take into account the shear induced into 
the liquid by the cocurrent gas flow. For a range of values of gas velocity and vorticity in the liquid phase 
a new wave pattern is calculated, consisting of a recirculating eddy below the wave crest. It is suggested 
that, under certain conditions, the onset of this new type of waves (rather than the classical 
Kelvin-Helmholtz instability mechanism) provides the inviscid analog to the experimentally observed 
transition to roll waves. 
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1. I N T R O D U C T I O N  

Gas-liquid interfacial waves play a key role in a variety of flows appearing in process equipment 
as well as in nature. They affect the pressure drop and hold up of flow in channels and pipes and 
determine momentum and mass transfer in the upper ocean. Inviscid analysis has proven--within 
its inherent limitations--useful in describing the mechanisms of several wave-related phenomena 
(atomization of ripples, appearance of large waves, slugging in pipes etc.). 

The classical Kelvin-Helmholtz instability theory has been of central importance in understand- 
ing these two-phase flow phenomena (Kordyban & Ranov 1970; Mishima & Ishii 1980; Andritsos 
& Hanratty 1987a). However, non-linear interfacial waves have been considered by relatively few 
investigators. An excellent review of early work in the field is provided by Miles (1986). Saffman 
& Yuen (1982)--by implementing a second-order analysis--found that there is a distinct factor, 
associated with the Kelvin-Helmholtz instability, that limits the existence of finite steady waves. 
Bontozoglou & Hanratty (1988) extended these results for interfacial waves between fluids of finite 
depth. 

Lately, the assumption of constant vorticity has been incorporated (Pullin & Grimshaw 1983; 
Simmen & Saffman 1985; Teles da Silva & Peregrine 1988) to take into account the shear stresses 
generated at the interface or the bottom of the liquid layer. This model is more realistic for thin 
films or viscous liquids since vorticity will be distributed across the entire layer. Although linear 
shear strictly describes laminar flows, it has also been pointed out (Teles da Silva & Peregrine 1988) 
that waves riding on wind-induced drift, "see" a linear velocity profile if they are short enough. 
In this case, the vorticity can be satisfactorily approximated by its local value at the interface. 
Recent results (Breyiannis et  al. 1993) in the above context, showed that for negative vorticity 
(wind-induced shear) a new regime is present, where interfacial gravity waves develop a recirculat- 
ing eddy at the crest. This flow pattern appears at high enough gas velocities but still well below 
the Kelvin-Helmholtz limit. It is suggested that these waves are the inviscid analog of what is 
described in the experimental literature as "roll waves". 

Over the past years, there have been numerous reports of roll waves in gas-liquid flows, the term 
being used (in a rather loose sense) to describe flow surges in the liquid layer which differ from 
the classical Stokes waves, both in appearance and in properties. Such occurrences have been 

957 



958 G. BREYIANNIS et al. 

reported for horizontal gas-liquid flows at high enough gas velocities (Hanratty & Hershman 1961; 
Miya et al. 1971; Bruno & McCready 1988) and also for vertical free-falling films with or without 
shear (Telles & Dukler 1970; Brauner et al. 1985; Karapantsios et al. 1989). It is noted that in both 
cases roll waves are associated with high vorticity in the liquid layer, imposed, for horizontal flows, 
by the gas shear and for vertical films by the action of gravity. 

Attempts to explain and model this flow regime include computation of the flow field below a 
wave in free-falling films (Brauner 1989), using as input the wave shape and celerity. This 
computation demonstrates that a large mixing eddy exists in the wave core. Of particular 
interest to the present study is the work of Andritsos & Hanratty (1987a), where it is indicated 
that the appearance of roll waves in horizontal pipe flow can be predicted by an inviscid 
Kelvin-Helmholtz analysis. It is also worth noting, that, some time ago the possibility of roll wave 
formation in ocean flows has been suggested (Banner & Phillips, 1974). Namely, it was argued that 
when the flow near the surface is rotational, the appearance of a stagnation point near the wave 
crest--which is considered a mechanism for incipient breaking--should not necessarily be 
connected with a discontinuity in surface slope (geometrical limit). However, to the best of our 
knowledge, there has been, up to now, no direct theoretical computation of roll waves starting from 
first principles. 

In the present work, the results of Breyiannis et al. (1993) are extended and applied to a 
two-phase flow situation of practical interest. In particular, the theory is extended to include in 
its formulation the effect of surface tension and simple analytical criteria (derived from linear and 
weakly non-linear analyses) are presented for the onset of inviscid roll waves and compared 
with previously obtained numerical results. The analysis is subsequently applied to liquid films 
thin enough that the gas-induced shear is linear. The relation between gas velocity and liquid 
vorticity (both treated as independent parameters in formal inviscid theory) is modeled through 
a stress balance and use of an expression for the friction factor at the interface. It is demonstrated 
that, under such conditions, the incipient appearance of roll waves (predicted from theory) seems 
more relevant to the experimentally observed transition than the classical Kelvin-Helmholtz 
instability. 

The formulation of the problem is presented in section 2, supplemented by a linear analysis. 
Weakly non-linear waves are discussed in section 3, where the validity of the second-order analysis 
is established. In section 4 the results for the aforementioned flow conditions are derived, while 
in section 5 the conclusions are given. 

2. PROBLEM F O R M U L A T I O N  AND LINEAR ANALYSIS 

The flow configuration under consideration is sketched in figure 1, where both a physical 
reference frame and a reference frame with the wave at rest are depicted. The interface is located 
at y = r/(x) while the top and bottom boundaries are at d2 and -d~ respectively. The origin is 
chosen so that the mean elevation ~/(x) over one wavelength is zero. Properties of the lower fluid 
are denoted by subscript 1 and those of the upper fluid by subscript 2. The two fluids are assumed 
to be stably stratified by gravity so P2 < P~ and the upper fluid is moving relative to the lower one 
with a horizontal velocity U. The undisturbed flow of the lower fluid is a shear flow with velocity 
that varies linearly in the vertical direction. The liquid shear is described by a vorticity vector, whose 
magnitude is specified by ( and whose direction is perpendicular to the (x, y) plane. The upper 
flow is assumed to be irrotational and both fluids are taken as incompressible and inviscid. The 
flow shown in figure 1 corresponds to ~ < 0, with the wave propagating downstream. This flow 
configuration is equivalent to a shear flow generated by the wind. 

Inviscid flows with initially uniform vorticity distribution are ammenable to simplified analysis 
because Kelvin's circulation theorem guarantees that the vorticity will always remain constant. It 
is this feature of constant vorticity flows that simplifies the analysis. Poisson's equation, 

v 2 ~  = - ~ .  [i] 

holds within the fluid and ~ can be written as the sum of a particular solution satisfing [1] (for 
= const, this is simply the original flow field) and an irrotational stream function ~(x,  y). 
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Therefore, the velocity field can be described by a superposition of an irrotational component to 
the original linear shear. The two components of the velocity vector are defined by 

u, = \ ax - ~y' ~ - y ]  [2] 

and 
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Figure 1. Sketch of the flow configuration for wave propagating downstream, ~ < 0, (i) physical reference 
frame; (ii) reference frame moving with the wave phase velocity. 
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where the velocity potentials ~bi, i = 1, 2, satisfy Laplace's equation V2tbi = 0 in each fluid domain. 
The dynamical condition of  equal pressures on the interface is presented in the form of a combined 
Bernoulli equation at y = t/, 

2 \ \ -~-x  - ( y -  C ) 2 +  (~2y j ) 2 ) _ ~  r ((~__~x: - C ) 2 +  (_~y2)2) 

~2~ 

~2 X 
-I-(l--r)gtl--~r + K = 0 .  [3] (l÷(0 YY 

\Ox] J 
Equation [3] is given in a reference frame moving with the wave celerity, thus rendering the wave 
motionless. 

It is noted that for uniform vorticity, (, the Bernoulli constant is modified to read K, = K, + (¢, 
where ~b is the local value of the stream function (Batchelor 1983). In this case the Bernoulli 
equation is applied on the interface which is a streamline of  the motion (~k = const.) and the 
additional term is incorporated in the constant K of [3]. 

The leading order terms for the wave profile and the volocity potentials are 

and 

q(w) = ~ cos w, [4] 

~b~ (x, y, t) = A~ (e ky + e -2*d~ e -ky) sin w, [5] 

q~2(x, y, t) = Ux + Bl (e ky + e z~d2 e -ky) sin w, [6] 

where ct is half the wave height (H = 2~), w = k x -  cot is the wave phase, A~ = Ct~t/(1 - X ) ,  
B, = - ( U -  C~)0t/(1- Y-~) with Cj being the linear wave phase speed and X, Y defined as 
X = e-2kd,, y = e-2kd2. 

Linear analysis provides a first insight into the characteristics of waves with constant vorticity. 
The linearized solution of the problem is readily found and gives a dispersion relation which can 
be written as 

I + X c 2  I + Y  g ( l _ r ) + C t  trk 
-I ~ X  t + r - f - S - - y ( U - C t ) 2 = k  ---~-t , [7] 

Pl 

where g is the gravitational acceleration, k = 2fr/L is the wave number with L representing the wave 
length, r is the density ratio P2/Pl and a is the surface tension. The critical current velocity 
corresponding to the linear Kelvin-Helmholtz limit, U¢~, is derived from [7] as 

Uc,= Ud + [U~ + (g/k(1--  r) + trk/p')(X" + rY')  + (X'Ud)2_ll/2 ' 
rX" r" [8] 

where 

I + X  I + Y  
X ' -  Y ' =  Ud-- • 

1 -- X 1 -- Y 2kX'  

As it is seen from [8], the linear Kelvin-Helmholtz limit depends on the vorticity of  the lower 
fluid. Although the minimum Uct is reached at slightly negative vorticity, large negative vorticities 
cause the dynamical limit to move to larger current velocities. 

It has been shown by Breyiannis et al. (1993) that, in the moving reference frame, inviscid roll 
waves are characterized by a closed eddy below the crest. The recirculating eddy is first manifested 
by the appearance of a stagnation point on the wave crest when the x-component of  the lower 
fluid velocity equals the wave celerity. This limiting condition will be applied, to first order, in the 
linear expression for the liquid velocity, to calculate a minimum necessary amplitude for the 
transition to occur. It is evident that linear theory may no longer be valid for such amplitudes. 
However, the prediction may prove reasonably accurate. Similar reasoning for the prediction of 
the geometrical limit of  Stokes waves has been used in the engineering literature (Mishima & Ishii 
1980) with relative success. 
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Figure 2. The Ur~ and the Ud for various vortieities versus the wavelength for air-water flow with 
r = 0.0013, d2 = 0.02, d l =  0.002 m and tr = 0.073 (N/m). 

The x-velocity component of the lower fluid at the interface [2] is found from the velocity 

potential [5] to be, 

ux=(klC~x(ek~+Xe_k~)_~)atcosw. [9] 

with CI defined from the linear dispersion relation [7]. The stagnation point first appears at the crest 
(w = 0) when ux becomes equal to the phase velocity. Setting ux(x = O) = Ct in [9], the following 

linear estimate of  the critical roll wave amplitude is found. 

(7, [1Ol 
at' = X'kC - " 

In the following section this is compared with numerical and weakly non-linear results. 
As the amplitude of  the wave increases beyond this point, a critical layer is created, originating 

from two symmetric stagnation points at some distance along the profile. The position of the critical 
layer changes depending on the wave celerity. In particular, the critical layer is located over the 
mean level for C > 0 and below the mean level for C < 0, as is clarified by observing the flow field 
in figure 1. Thus, for C > 0 the appearance of a recirculating eddy is possible only for finite 
amplitude waves, while in the case of  C < 0 the eddy may occur even for linear waves. It is seen 
that the limiting case of  a linear wave is retained when C~ = 0. By setting C~ = 0 in [7] the 

corresponding current velocity 

Ur,=I.g(1-r)/k+trk/ptl-y]l/2 [11] 
r i ¥  

is obtained, which we define as the critical "roll velocity". For U > Url all waves will present the 

new flow pattern. 
It is noted that the condition u~ - C~ = 0 can be satisfied for positive Ct also, for some values 

of  the vorticity ~, if the perturbed flow is superimposed. However since the term on the right-hand 
side of  [9] is of  the order of  at, the wave celerity must also be of the order of at. Thus from the linear 

point of  view the criterion (Ct = 0) is acceptable. 
In figure 2, the critical roll velocity U, and the critical linear velocity Ucl are plotted versus the 

wave length for various values of  vortieity, keeping constant the values of  the depths and the density 
ratio. It is clear that the present inviscid roll wave approach predicts a possible initation of  roll 
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waves ahead of the classical Kelvin-Helmholtz theory. The difference between the onset of linear 
roll waves and Kelvin-Helmholtz instability is particularly pronounced for longer waves. It 
increases drastically with the magnitude of liquid shear and it is significant even at the minimum 
wavelength. The above results provide only a first approach to the problem since, as is discussed 
in the following section, non-linearity greatly affects the transition by causing the waves to roll at 
even smaller current velocities. In that sense, roll waves depend significantly on the value of 
vorticity. 

3. NON-LINEAR ROLL WAVES 

A complete description of the analysis for non-linear waves has been presented in previous work 
(Breyiannis et al. 1993). In this work, similar analysis has been undertaken but with the added 
feature of  the inclusion of the surface tension term. The following expression for the wave celerity 
has been derived: 

C - rY 'U + ~/[2k] + [121 / ( r Y ' U  + ~/[2k]y r Y ' U 2 - g ( 1 - r ) / k  - a k / p i  - a Z A  
X ' + r V '  ~ / \ - - ~ - ;  / X ' + r V '  

where a is the wave amplitude and A the non-linear term 

= ' k 2 ( ~ 2 1 + X ( 1 - g  X x } 2 ) + r ( U - 2 ) 2 I + Y ( I  

22 1 + 4X + X 2 
+½k2 (1 - X )  2 

8 Pl 

1 + 4 Y +  y2 2 ) r(U - 2) 2 (1 - y)2 k 2~ 1 +i___X 5 X  2 + X. +z~-/;;75-2~ 

[131 
(.~2 1 - X  1 - -Y  3ak  ) 

. I + x + r ( U - 2 ) z I + - - - - -  ~ -  -~j 

The above expression reduces, for ~ = 0, to that given by Miles (1986). 
Equation [12] and the corresponding second-order velocity potential is used to evaluate the 

transition to roll waves through the already familiar criterion, 

Ox ~), - C = O. 

The U velocity that satisfies the above criterion is defined as the roll velocity Ur. In figure 3 the 
effect of wave amplitude and vorticity on Ur, for a representative case of gravity waves (a = 0) is 
given. A direct comparison between the above expressions and the fully non-linear numerical results 
provided by a boundary integral code (Breyiannis et al. 1993) is also made. These results are 
presented in the form of dimensionless quantities. All lengths are non-dimensionalized with the 
wavenumber k and the velocities are Froude numbers using k - ~ as characteristic length. The reader 
should refer to the original publication for more details on the implemented numerical scheme. 

Weakly non-linear results follow closely the numerical ones up to the point where higher 
harmonics appear in the wave profile. This point is considered to be the limit of validity of the 
second-order analysis. The linear relation [10] is in good agreement with numerical results for large 
values of ~ and small wave amplitude. Its most serious drawback though is that, unlike the 
second-order theory, it does not predict the leveling off of the numerical results, observed at higher 
wave amplitudes. 

An interesting point in figure 3 is that the appearance of roll waves is a subcritical phenomenon, 
in the sense that, for finite amplitude waves, the transition occurs at lower gas velocities. The 
variation in the transition gas velocity with increasing height is certainly significant, with reductions 
of the order of 50% being manifested for waves with intermediate height. Thus, finite amplitude 
effects play a key role and cannot be accounted for by a small correction. 



ROLL WAVES IN HORIZONTAL GAS-LIQUID FLOWS 963 

0.7 

0.6- 

0.5- 

0 . 4 "  

0.3 

0.2 

0.1 

0 
0 

I ' ' ' ' I . . . .  I . . . .  I . . . .  I . . . .  

5 30 

"" ~ v numerical results 
" 2nd order 

n a d ' -  - - - -  l i n e a r  a a a,~ 

~'=-I ~ \  

~*=-5 -- -- -d -- -=- -  _ _ ~  

10 15 20 25 

U" 

Figure 3. Effect of vorticity on the transition to roll waves for gravity air-water waves. Com- 
parison between several schemes, r = 0.0013, e -kd2 = 0, e kd' = 0.25, 4" = ( /z /x /~  and U* = U / ~  

An increase in the magni tude o f  vorticity o f  the liquid, for constant  gas velocity, is seen to reduce 
the wave height required for transition. However,  according to an impor tant  finding of  the constant  
vorticity model  (Telles da Silva & Peregrine 1988), the maximum wave height also decreases with 
increasing vorticity. Thus,  the behavior  o f  U, is quite complex. A roll wave can appear  at small 
current velocities, either when a wave increases in height or  when the fluid becomes more  sheared. 
The above arguments,  in connect ion with the assumption that  ~ scales with depth, could suggest 
that, for high liquid ReL numbers,  it is the wave amplitude that  controls the appearance o f  roll 
waves while for small ReL it is the liquid shear. 

Figure 4 depicts the effect o f  surface tension for a given small wavelength. A convenient scale 
has been invoked to obtain information about  the behavior  o f  waves o f  small wavelength. The 
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depths are chosen to have a ratio of dt/d2 = 0.1, representative of a typical cocurrent, stratified flow. 
Surface tension seems to delay the appearance of roll waves not only in absolute but in relative 
values as well. In the weakly non-linear analysis higher harmonics appear sooner when surface 
tension is present, although the pattern is the same and U~ is a strong function of the wave 
amplitude and vorticity. This appearance, however, does not necessarily indicate the limit of 
validity of second-order theory, as double-crested capillary-gravity waves are known to exist 
(Bontozoglou & Hanratty 1990). 

The theoretical information gathered up to this point is used in the next section to analyse a 
representative flow with linear velocity profile, that of a film in laminar motion (high viscocity or 
very thin film). As noted in the introduction, this is the most straightforward but not the only case 
where a constant vorticity model is applicable. 

4. PREDICTION OF ROLL WAVES 

Inviscid theory treats gas velocity and liquid vorticity as independent input parameters. However, 
when the vorticity of the liquid is induced through shear, gas velocity and vorticity are related. To 
estimate the vorticity induced by the superimposed gas flow on a laminar liquid film, the following 
expression for the gas friction factor (Andreussi et al. 1985) is used: 

f~ = 0.046ReJ "2 [14] 

The interfacial shear stress is then calculated to be equal to 

z s = 0.023p2 v °2 U l'sd2°2 • [15] 

A more accurate estimate should include the effect of interfacial waves (as in Andritsos & Hanratty 
1987b). Another simplification--implicit in the above formulation of the friciton factor--is the 
neglect of the liquid velocity in comparison with the much higher gas velocity. Given the 
preliminary nature of our results, neither of the above elaborations was deemed necessary. 

For a laminar film, the constant vorticity imposed by a gas shear is given by 

= z__~ [16] 

Equation [16] is plotted in figure 5 (solid line) for the flow of air over water [figure 5(a)] and over 
a 50% water-glycerol mixture [figure 5(b)]. Also plotted are the predictions of inviscid theory for 
the onset of Kelvin-Helmholtz instability [8] and for the incipient appearance of roll waves [10] 
for three representative wave lengths. Transition is predicted to take place at the value of vorticity 
corresponding to the intersection of each of the inviscid curves with [16]. It is easier to envision 
this, if it is considered that increasing the gas velocity is equivalent to moving along the solid 
line [16]. 

What becomes immediately evident from figure 5(a) is that, for a laminar water film, 
Kelvin-Helmholtz instability should never take place. This has to do with the fact that the critical 
velocity Ud is a strong increasing function of the magnitude of vorticity I(I. Therefore, increasing 
the gas velocity does not guarantee an approach to Kelvin-Helmholtz instability, as higher values 
of U lead also to an increase in I(I. The transition to roll waves, however, is not very sensitive to 
vorticity and such waves should appear. It is an interesting coincidence that the gas velocity for 
the transition, U~, is roughly equal to the Kelvin-Helmholtz instability velocity for ( = 0. 

Finally, for the viscous case [figure 5(b)] it is observed that although both roll waves and 
Kelvin-Helmholtz waves may appear, the significance of Kelvin-Helmholtz instability is restricted 
to short waves, whereas longer roll waves are possible. 

5. C O N C L U D I N G  REMARKS 

A constant liquid-vorticity model has been applied to describe interfacial waves in horizontal 
gas-liquid flows. For high gas velocity and liquid vorticity, waves comprising a recirculating eddy 
at the crest are calculated. Linear and weakly non-linear approximations compare reasonably well 
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points) and a physical relation for air-water flow with r = 0 . 0 0 1 3 ,  d 2 = 0 . 0 2 m ,  d t = 0 . 0 0 2 m  and 
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with numerical results and indicate a strong dependence of the transition to roll waves on wave 
amplitude. 

It is shown that the new flow pattern always appears at lower gas velocities than the 
Kelvin-Helmholtz instability, the difference between the two velocities being more pronounced for 
longer waves and higher vorticity. In fact, a detailed calculation valid for laminar liquid flow, 
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Figure 5(b). Comparison between the predictions of K - H  theory (dashed lines), roll waves theory (discrete 
points) and a physical relation for air-50% water/glycerol mixture flow with r = 0.00105, d 2 = 0.02 m, 

dl = 0.002, m, tr = 0.069 (N/m) and/z  L = 6 cP. 
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indicates that Kelvin-Helmholtz instability is generally limited to short waves and may not be 
realized for thin films of liquids with low viscocity. 

A different behavior is expected when the liquid film is turbulent. The liquid velocity gradient 
at the interface will, for the same gas velocity, be less steep than in laminar flow, resulting in smaller 
values of vorticity. Thus, Kelvin-Helmholtz instability is expected to play a more active role. It 
should be noted, however, that the non-uniformity of vorticity across a turbulent layer makes the 
present analysis valid only for short waves. 

Finally, it should be stressed that the present results refer to steady-progressive waves of 
permanent form and do not address the stability question. The situation is similar to the classical 
water wave theory, which, though incapable of predicting the growth mechanism, does describe 
satisfactorily the characteristics of waves once they have formed. In the present case, the formation 
of roll waves at gas velocities below the Kelvin-Helmholtz limit could be attributed to energy input 
through gas-pressure variations in phase with the wave slope (Miles 1957). These considerations, 
however, are beyond the scope of the present work. 
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